Kuala Lumpur, Malaysia, (BBN)-New information emerged Friday in the investigation into the disappearance of Malaysia Airlines Flight 370 and, with it, new questions:
How is the search for the plane coming?
The effort got a vote of confidence Friday that it is headed in the right direction.
"We have very much narrowed down the search area, and we are very confident that the signals that we are detecting are from the black box on MH370," Australian Prime Minister Tony Abbott told reporters during an official visit to China.
Black boxes are the plane's flight data recorder and the cockpit voice recorder.
Locator beacons attached to them are designed to emit high-pitched signals, or pings.
Over the past week, four such pings have been detected by a ping locator towed by the Australian vessel Ocean Shield.
What about that ping they talked about Thursday?
The fifth ping, detected by a sonobuoy dropped by an airplane, is "unlikely to be related to the aircraft black boxes," retired Air Chief Marshal Angus Houston, the head of the Australian agency coordinating search operations, said Friday.
"On the information I have available to me, there has been no major breakthrough in the search for MH370," Houston said in a prepared statement. "Further analysis continues to be undertaken by Australian Joint Acoustic Analysis Centre."
How do the buoys work?
Four Royal Australian Air Force P-3 Orions have been modified with the technology to detect signals from sonobuoys, which they eject into the ocean.
Once they hit the water, they release microphones that descend about 1,000 feet into the water. Sound signals they detect are transmitted to surface floats, which relay them back to the plane, said Jules Jaffe, a research oceanographer with the Scripps Institution of Oceanography.
Though "they're really very high-fidelity microphones," it's still "astounding" that they can detect signals from thousands of feet below, he said.
Jaffe said the sonobuoys are as accurate as the towed pinger locator that has detected other signals considered clues to the plane's whereabouts.
When will they have enough data to go find the boxes?
There's no such thing as too many data points when looking for a device that could be buried 2.8 miles below the surface in silt tens of meters deep. That's because they can triangulate the hits, searching for areas of overlap in an attempt to narrow the search site.
So, investigators plan to keep hunting until there is no chance that the batteries powering the plane's locator beacons are still working.
When will that be?
The beacons are certified to last 30 days but will probably last at least 35 days, which would be Saturday, according to Chris Portale, director of Dukane Seacom, the manufacturer.
Angus, though, noted Wednesday that the signals appeared to be weakening.
What have we learned about the final moments of the plane?
Flight 370's pilot, Capt Zaharie Ahmad Shah, was the last person on the jet to speak to air traffic controllers, telling them "Good night, Malaysian three-seven-zero," Malaysian sources told CNN. The sources said there was nothing unusual about his voice, which conveyed no sign of stress. One of the sources, an official involved in the investigation, said police played the recording to five other Malaysia Airlines pilots who knew the pilot and co-pilot. "There were no third-party voices," the source said.
That's significant because it would suggest that the captain was working the radio while the first officer was flying the plane.
What about the dip in altitude?
The Boeing jetliner disappeared from military radar for about 120 nautical miles after it had crossed back over the Malaysian Peninsula, sources say. This means the plane must have dropped to an altitude of 4,000 to 5,000 feet, a senior Malaysian government official and a source involved in the investigation tell CNN.
Why might that matter?
Experts disagree over what significance the reported dip may hold.
"It looks as though they were doing it to avoid any kind of detection," CNN aviation analyst Peter Goelz said.
But former US Department of Transportation Inspector General Mary Schiavo says it could mean that the cabin lost pressure, and the pilots descended to where they could breathe without oxygen.
Or it could mean that the plane lost communications and was just trying to get out of the way of commercial traffic, she said.
How sure are experts that the detected signals are, in fact, from the pingers?
They were pretty darned sure, though not certain, that the signals detected by the towed pinger locator were the real thing. One of two signals detected Tuesday was at 33.331 kHz and was pulsed at a 1.106-second interval, according to Houston, who cited a data analysis carried out by experts at the Australian Joint Acoustic Analysis Centre.
That's near the standard 37.5 kHz frequency used by the recorders; the difference is not surprising, given the vagaries of how sound travels under water. "They believe the signals to be consistent with the specification and description of a flight data recorder," he said.
Adding to experts' confidence is the fact that the signals were detected along the missing plane's estimated flight path, which was calculated based on its direction and fuel capacity.
Two other signals were detected nearby on April 5.
From how far can the pingers be detected?
Their range of 2 nautical miles (2.3 miles) is less than the depth of the waters they are believed to be in, which makes the discovery of the signals all the more impressive.
What happens once the pingers are found?
Investigators would use an underwater autonomous vehicle to travel to the ocean floor to reach them, Houston said Wednesday.
Just where on Earth is this happening, and what is it like there?
The searchers are focused on a remote stretch of the Indian Ocean 1,400 miles (2,250 kilometers) northwest of Perth, Australia, that carries its own challenges.
"It's quite possible that there are currents down there, which could have disturbed the debris," Commodore Peter Leavy of the Royal Australian Navy, who is coordinating military contributions to the search, said Wednesday. "It has been said we know more about the surface of the moon than our own seabed of our ocean floor. I think that's probably right."
Why don't they bring in more equipment to speed this thing up?
Because needless noise would complicate the search for the audio signals. Even the Ocean Shield is minimizing all its systems, using only the equipment it can't do without, according to Houston. "Everything else is turned off."
And when the batteries are pretty surely dead?
Searchers would send out a Bluefin-21 autonomous underwater vehicle with a more accurate sonar and possibly a camera for mapping the ocean floor, said Leavy.
OK, let's say they get a good fix on the pingers. Then how long before they're brought up?
The device(s) would be transferred to fresh water and then dried before the data they contain would be pulled out, Schiavo said. "Then they'll discover on the FDR what they're dealing with and how much of the wreckage they really have to bring up to solve the mystery."
But don't hold your breath. Houston said that when Air France Flight 447 plunged into the South Atlantic Ocean in 2009, killing all 228 people aboard, it took investigators nearly two years to find the wreckage.
And the tough slogging wasn't over. "They thought they had a good fix, and it took the underwater vehicles 20 days to get to the wreckage," Houston said.
But the efforts paid off. Once that happened, submersible vehicles retrieved the plane's voice and flight data recorders, which led investigators to conclude that a series of pilot errors and their failure to react effectively to technical problems had caused the crash.

BBN/ANS/AD/12Apr14-4:35 pm (BST)